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We investigate the acoustic emission from wave packets to the far field. To this
end, we develop a theory for one- and two-dimensional source fields in the shape of
wave packets with Gaussian envelopes. This theory is based on an approximation
to Lighthill’s acoustic analogy for distant observers. It is formulated in the spectral
domain in which a Gaussian wave packet is represented again by a Gaussian. This
allows us to determine the directivity of the acoustic emission (e.g. superdirectivity
and Mach waves) by simple geometric constructions in the spectral domain. It is
shown that the character of the acoustic emission is mainly governed by the aspect
ratio and the Mach number of the wave packet source. To illustrate the relevance of
this theory we use it to study two prominent problems in subsonic jet aeroacoustics.

1. Introduction
In order to understand the character of the acoustic emission from a given source, it

is necessary to look at the temporal as well as the spatial structure of the source. The
present work addresses sound sources shaped as wave packets. We will demonstrate
the tight relation between the temporal and spatial structures of a wave packet source
and its acoustic emission to the far field. In particular, we will study the relation
between the aspect ratio and phase velocity of the wave packet and the directivity of
the sound emission.

Wave packets have been identified by several authors as relevant structures in
aeroacoustic source fields. Tam & Morris (1980) discussed the sound emission from
instability waves in shear layers. They showed that the spatial variation of the base
flow leads to sound-emitting waves which are local in physical space and in spectral
space (i.e. wave packets). This was followed by a study of the sound emission from
wave packets in highly supersonic flows (Tam & Burton 1984a ,b). Laufer & Yen
(1983) performed experiments with low-Mach-number jets. They observed near-field
pressure fluctuations in the shape of wave packets which exhibit highly directional
acoustic emission patterns in the downstream direction. Such emission patterns are
known as ‘superdirective’ acoustic fields (Crighton & Huerre 1990) which cannot be
expanded into finite series of multipoles. Their directional intensity is described by an
exponential function of the emission angle which is called ‘antenna factor’ (Huerre &
Crighton 1983). Huerre & Crighton (1983) and Crighton & Huerre (1990) studied
the superdirective sound emission from wave packet pressure fields analytically and
tried to explain the observations of Laufer & Yen (1983). Their wave packets feature
different envelope functions in the axial direction, while they are compact in the
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direction perpendicular to the jet axis. Haj-Hariri & Akylas (1986) studied the weakly
nonlinear temporal evolution of the acoustic emission from instability wave packets
in boundary layers. They pointed out the sensitivity of the results to the shape of the
wave packet envelope. Avital & Sandham (1997) extended the results of Crighton &
Huerre (1990) and discussed the sound emitted by wave packet sources in the near and
far fields for different Mach numbers and wave packet envelopes. Cooper & Crighton
(2000) performed a global stability analysis on a slowly diverging axisymmetric jet
and found a global mode with a Gaussian envelope which produces a superdirective
emission pattern. Up to small quantitative differences, their results were consistent
with the experimental findings of Laufer & Yen (1983). Wu (2005) derived an explicit
solution for the Mach wave field due to a supersonic wave packet in terms of its
envelope. Sandham, Morfey & Hu (2006) investigated the aeroacoustics of a plane jet
and found flow instabilities in the shape of two-dimensional wave packets which they
then related to the sound generation. Le Dizès & Millet (2007) studied the acoustic
near field around instability wave packets for transonic configurations. They showed
how the character of the acoustic emission changes as the waves in the source field
pass from sub- to supersonic phase speed. Wu & Huerre (in press) analysed the sound
emitted by subsonic wave packets consisting of a pair of helical instability modes.

It is the goal of the present work to find an explanation for the different fundamental
directivity patterns that can be observed for wave packet sources. But rather than
trying to obtain a full solution for the complete acoustic field we will aim for an
elementary theory which describes only the dominant terms in the acoustic far field.
This will allow us to identify the relevant physical parameters characterizing the
acoustic emission. To validate the theoretical predictions we will compare them to
numerical results obtained with a standard acoustic solver. It integrates the retarded
potential (derived from Lighthill’s acoustic analogy) numerically in time for a known
source field.

For the purpose of the present investigation, we focus on wave packets with a
Gaussian envelope. Such wave packets have the convenient property that they can
be represented by a Gaussian in the spectral domain. We will describe different
emission patterns (superdirectivity, Mach waves, etc.) with a single theory which is
based on a spectral formulation of Lighthill’s acoustic analogy introduced in the
following section. This formulation was also used by Bastin, Lafon & Candel (1997)
and Lesshafft (2006) to study the noise emission from jets. For simplicity, we will
develop first a theory for a one-dimensional generic source in the shape of a Gaussian
wave packet (§ 2). In § 3, we extend the theory to two-dimensional sources, where
we will see that the aspect ratio of the wave packet has a major influence on the
directivity pattern. As a further generalization, we look at oblique wave packets in § 4,
where we will find that Mach-wave-like sound emission is also possible for subsonic
wave packets. In § 5, we try to relate our theory to physical quantities in the source
field. As an application of our theory, we offer in § 6 some explanations for the sound
emission from subsonic jets. Section 7 concludes this paper.

1.1. Lighthill’s acoustic analogy and the Fraunhofer approximation

Lighthill’s acoustic analogy (Lighthill 1952) relates the density ρ to Lighthill’s stress
tensor Tij ,

∂2ρ

∂t2
− a2

0

∂2ρ

∂xi∂xi

=
∂2Tij

∂xi∂xj

(1.1)
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with

Tij = ρuiuj + (p − a2
0ρ)δij − μ

[
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

]
, (1.2)

where t is the time; x =(x1, x2, x3) are the Cartesian coordinates; ui are the
components of the velocity vector; p is the pressure; a0 is the ambient speed of
sound; and μ is the dynamic viscosity. (Here and throughout this section we use
Einstein’s summation convention.)

If Tij is known, (1.1) can be readily solved with the appropriate Green’s function.
In unbounded domains the pressure p (which is equal to a2

0ρ in the isentropic far
field) is then given by

p(x, t) = p∞ +

∫∫∫ ∞

−∞

1

4πr

∂2Tij

∂xi∂xj

∣∣∣∣
t−r/a0

dx ′, (1.3)

where p∞ is the ambient pressure and r = |x − x ′|. The term ∂2Tij /∂xi∂xj is evaluated
at the time t −r/a0. This form is also known as the retarded potential. In the following
sections, we will evaluate this integral numerically to validate our theoretical results.

To derive the theory for wave packets, we modify (1.3) for distant observers, i.e.
robs � L, where L is a typical length scale of the source region. (We will give a sharper
condition for robs later.) Further, we assume that p and Tij are periodic in time such
that we may express these quantities as Fourier series,

p(x, t) =

∞∑
n=−∞

p̃n(x)e−iωnt , (1.4a)

∂2

∂xi∂xj

Tij (x, t) ≡ q(x, t) =

∞∑
n=−∞

q̃n(x)e−iωnt , (1.4b)

where ωn = n 2π/τ in which τ is the period corresponding to the lowest resolved
frequency. With these two Fourier series we can rewrite (1.3) as

p̃n(x) =

∫∫∫ ∞

−∞

q̃n(x ′)

4πr
eiωnr/a0 dx ′. (1.5)

In this form, the retarded time t − r/a0 in (1.3) has translated into to a phase shift by
the angle ωnr/a0.

Without loss of generality, we assume now that the coordinate system x is oriented
such that the observer is located at x =(robs, 0, 0) and that the source field q is centred
at the origin of x. Based on these assumptions we approximate r in (1.5) by

r ≈ robs − x ′
1. (1.6)

This allows us to pull the ‘overall phase shift’ exp(i ωnrobs/a0) out of the integral.
Further, we replace 1/r by 1/robs which introduces an amplitude error O(L/robs) but
no phase error. We write

p̃n(x) =
ei ωnrobs/a0

4πrobs

∫∫∫ ∞

−∞
q̃n(x ′) e−iωnx

′
1/a0dx ′. (1.7)

The approximation that we have used to obtain (1.7) from (1.5) is known as the
‘Fraunhofer approximation’ (Howe 2003).
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From the definition of the spatial Fourier transform of q̃ ,

q̂n(k) =

∫∫∫ ∞

−∞
q̃n(x)e−i k·xdx, (1.8)

it becomes clear that the integral in (1.7) is equal to the spatial Fourier coefficient of
q̃ for k = kobs = (ωn/a0, 0, 0). Therefore, we get

p̃n(x) =
1

4πrobs

q̂n(kobs) eiωnrobs/a0 . (1.9)

In a final step, we replace q̂n by the spatio-temporal Fourier transform of Tij and
make use of the property that ∂/∂xi translates to iki ,

p̃n(x) = − ω2
n

4πa2
0robs

T̂11,n(kobs) eiωnrobs/a0 . (1.10)

For a general Cartesian coordinate system, the relation becomes

p̃n(x) = − kikj

4πrobs

T̂ij,n(kobs) eiωnrobs/a0, (1.11)

where

kobs =
ωn

a0

x
|x| . (1.12)

This relation tells us that only the energy contained in the wavenumber kobs is emitted
to the far field. All other Fourier components of the source field emit only into the
near field. Or in other words, the acoustic wave guide is only able to transmit signals
with the acoustic wavenumber ka = ωn/a0.

In one space dimension, sound of a given frequency ω can be emitted either
in the positive (x > 0) or in the negative (x < 0) direction; i.e. there are only two
wavenumbers, k = ±ka , which are relevant to the acoustic far field. In two dimensions,
the relevant wavenumbers lie on a circle with radius |k| = ka . In three dimensions, the
emitting wavenumbers lie on a sphere (cf. figure 1 of Goldstein 2005).

In the context of aeroacoustics (1.11) was probably first formulated by Kraichnan
(1953). It was also derived in a slightly different context by Crighton (1975). Bastin
et al. (1997) and Lesshafft (2006) used it to compute the sound in the far field of
a plane jet and of a round hot jet, respectively. In this work, we will present a
geometrical interpretation of (1.11) in the wavenumber plane.

So far, we have just stated that the Fraunhofer approximation is valid if the observer
is far from the source region. We make this condition more precise by comparing the
path lengths of two waves emitted from the edge and from the centre of the source
region (figure 1). The Fraunhofer approximation requires that these two waves arrive
at the observer with negligible phase difference, or in other words, the difference
between the path lengths rL and robs must be much less than the acoustic wavelength
λa = 2π/ka , √

r2
obs + L2 − robs � λa. (1.13)

For distant observers (robs � L) we can simplify this relation to obtain the following
condition for the observer distance robs:

robs

L
� L

2λa

. (1.14)
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rL

robs

λa

Source region

Observer

Figure 1. Different path lengths robs and rL for acoustic waves emitted from the centre and
the edge of the source region, respectively.

In the following, we will define sources q(x, t) in the form of Gaussian wave packets.
We postpone the discussion of the possible origin of such sources to § 7.

2. One-dimensional wave packets
We begin with a one-dimensional problem for which we assume an acoustic source

in the form of a wave packet of width 2L:

q(x, t) = q0e
−x2/L2+i(k0x−ω0t). (2.1)

The waves within the wave packet envelope have a wavelength λ0 = 2π/k0 and the
phase velocity cp = ω0/k0. With this phase velocity, we define the Mach number Mp

as

Mp =

∣∣∣∣cp

a0

∣∣∣∣ =

∣∣∣∣ka

k0

∣∣∣∣ . (2.2)

After a Fourier transform in time and space this source becomes

q̂(k, ω) = q0e
−(k−k0)

2L2/4δ(ω − ω0). (2.3)

For simplicity, we will drop the functional dependence on ω in the following.
According to the spectral formulation of the Fraunhofer approximation to Lighthill’s
analogy (1.10) only the wavenumber k = ka can emit sound to the far field. The
energy contained in the other wavenumbers is irrelevant for the far field, except for
the wavenumber k = −ka which corresponds to the sound emitted in the negative
x-direction. This situation is illustrated in figure 2.

The distance of the dominant wavenumber k0 from the acoustic wavenumbers ±ka

determines the intensity of the emitted sound. Note that this is equally true for super-
and subsonic phase speed. The closer k0 is to an acoustic wavenumber, the louder
the emitted sound. If the distance of the dominant wavenumber to an acoustic line is
less than 2/L we speak of ‘loud’ wave packets; else we call them ‘quiet’ wave packets.
Therefore, wave packets are loud (unidirectional) if∣∣∣∣ Mp

Mp − 1

∣∣∣∣ > π

(
L

λa

)
, (2.4)

and they are loud in both directions (bidirectional) if∣∣∣∣ Mp

Mp + 1

∣∣∣∣ > π

(
L

λa

)
. (2.5)
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Upstream emission(a) (b) Downstream emission

Fourier transform

x k

|q(x)| q̂(k)

2/L

2L

q0

k0
ka

–ka

Figure 2. Representation of a one-dimensional wave packet in (a) the physical and (b) the
spectral domain. The lines at |k| = ka indicate the wavenumbers which are relevant for the up-
and downstream emission of sound.

Quiet Loud
(unidirectional)

Loud
(bidirectional)

Subsonic

Supersonic

Figure 3. Examples of quiet or loud wave packets with super- and subsonic phase speed.

Figure 3 illustrates six possibilities for quiet and (uni- and bidirectionally) loud sources
with sub- and supersonic phase speed. It shows wave packets in the spectral domain
(as in figure 2b). Their midpoint k0 is either outside (subsonic) or inside (supersonic)
the interval [−ka, ka]. The spectral width of the wave packets is proportional to the
inverse of their physical width. The intensity of the emitted sound is indicated by the
amplitude of the Gaussian as it intersects with the acoustic lines ±ka . Figure 3 shows
also that the emission patterns do not differ fundamentally between wave packets
with sub- or supersonic phase speed. It is only relevant whether the phase speed
is close enough to the speed of sound. Fundamental differences between sub- and
supersonic sound emission will only appear when we go to two-dimensional wave
packets in § 3.

According to (2.4) and (2.5), we can make a quiet wave packet loud by decreasing
its width L. In the limit of L → 0, the wave packets become monopole point sources
which emit their energy equally in the up- and downstream directions. Of course,
the distinction between loud and quiet sources is somewhat arbitrary, and one could
argue that the right-hand sides of (2.4) and (2.5) should be multiplied by some other
factor. In that sense, relations (2.4) and (2.5) should not be seen as strict quantitative
rules. Rather, they indicate that the ‘acoustic compactness’ is the most relevant scale
for the intensity of acoustic emission, where the acoustic compactness of a source is
defined as the ratio of the size L of the source to the acoustic wavelength λa = λ0/Mp .

At this point, we would also like to emphasize that relations (2.4) and (2.5) do
not indicate whether the sound emission is superdirective or not. We will show in
the following sections that the intensity of the acoustic emission and the topology
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k0–k0

Figure 4. Sound emission from standing waves with wavenumber k0.

Fourier transform

(a) (b)

α

α

x1

x2

k1
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k0 = (k0,1, k0,2)

k0 = (k0,1, k0,2)
2/L1

2/L2

2L1

2L2
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Figure 5. Contour lines (solid lines: positive values; broken lines: negative values) of a
two-dimensional wave packet (Mp ≈ 0.7, σ ≈ 3, α = 60◦) in (a) the physical and (b) the
spectral domain. The shaded disk bounded by the acoustic circle |k| = ka indicates supersonic
wavenumbers.

of the directivity pattern are two different qualities which are influenced by different
parameters.

Before we continue our discussion for two-dimensional wave packets, we want to
discuss briefly the sound emission from wave packets with standing waves. We obtain
standing waves by superimposing two wave packets with opposite wavenumbers k0

and −k0. Although such wave packets have no apparent phase velocity, we maintain
the notion of the phase Mach number Mp = ka/|k0|. The sound emission from these
wave packets is a superposition of the emission from the two symmetric wave packets
(figure 4). The rule (2.4) for loud wave packets remains valid, except that the sound
emission will always be bidirectional.

3. Two-dimensional wave packets
By going from one- to two-dimensional wave packet sources we introduce new

length scales. We have now two wavenumbers (k0,1, k0,2) and two widths (L1, L2),

q(x1, x2, t) = q0e
−x2

1/L2
1−x2

2/L2
2+i(k0,1x1+k0,2x2−ω0t). (3.1)

The slenderness of this wave packet is described by the aspect ratio σ = L1/L2. We
will see in the following that σ has a strong influence on the directivity of the sound
emission. In the spectral domain, wave packet (3.1) is again a wave packet centred at
(k0,1, k0,2) with the half-widths 2/L1 and 2/L2 (figure 5). Therefore, the aspect ratio
in the spectral domain is 1/σ . The waves inside the wave packet propagate in the
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Figure 6. Superdirective sound emission to the far field from a slender subsonic wave packet.
(a) The diagram shows how the acoustic circle |k| = ka cuts through the spectral representation
of the wave packet centred at (k0, 0). (b) Numerical experiment with a slender subsonic wave
packet (σ = 10, Mp =0.9). The shaded area in the centre illustrates the wave packet source
field q (bright: positive values; dark: negative values). The arrow indicates the propagation
direction α of the waves within the wave packet. The thick line shows the SPL as a polar
plot in which the radius corresponds to the SPL, and the polar angle indicates the emission
direction ϕ. (Negative SPL values are not shown.) To illustrate the emitted acoustic waves
the shaded ring surrounding the source shows a snapshot of p(x1, x2, t0) · r . The results were
obtained by a direct numerical integration of Lighthill’s analogy (1.3).

direction α = arctan(k0,2/k0,1). Their phase velocity is given by cp = ω/|k0| and the
Mach number is

Mp =
ka

|k0| , (3.2)

where k0 = (k0,1, k0,2) is the wavenumber vector.
In the following, we use some simple geometric constructions in the spectral domain

to illustrate and classify the different directivity patterns. We will begin our discussion
for wavenumber vectors k0 which point in the streamwise direction, i.e. k0,2 = 0 and
α = 0◦. Wave packets with oblique waves (α �= 0◦) will be discussed in § 4.

3.1. Subsonic phase velocity

Let us start with a slender wave packet (σ > 1) with subsonic phase velocity and the
wavenumber vector k0 = (k0, 0). In the spectral domain, the centre of this wave packet
lies outside the acoustic circle |k| = ka because k0 >ka (figure 6a).

We know from (1.11) that only the Fourier modes q̂(|k| = ka) emit acoustic energy
to the far field and that this energy is emitted in the direction of the wavenumber
vector k. This acoustic emission is illustrated in figure 6(a) by arrows. The direction
of dominant sound emission is indicated by the tangential intersection of the spectral
contours of the source field with the acoustic circle. In our case, the subsonic
wave packet emits foremost in the downstream direction. The emission in the
sideline and upstream directions is exponentially small. This directivity characteristic
corresponds to the phenomenon of ‘superdirective’ emission (Crighton & Huerre
1990).

We confirm our theoretical result by a numerical experiment. To this end, we
evaluate integral (1.3) numerically for a given source term (3.1) with σ =8 and
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Figure 7. Bidirective emission from a broad subsonic wave packet: (a) diagram in the spectral
domain; (b) numerical experiment with Mp = 0.9 and σ = 0.1. (See the caption of figure 6b for
a more detailed explanation of b.)

Mp = 0.9. We measure the intensity of the sound emission by the sound pressure level
(SPL),

SPL = log(|p′|/pref )2, (3.3)

where the pressure fluctuation p′ =p(x, t) − p∞ is, in general, a function of space and
time. For our purpose, it is sufficient to measure the SPL along a large circle around
the source field q . The SPL is then only a function of the emission angle ϕ (measured
from the x1-axis). The reference pressure pref is chosen arbitrarily to adjust the SPL
values to a useful range. Figure 6(b) shows the result of this numerical experiment for
a subsonic wave packet. It confirms our theoretical finding that almost all acoustic
energy is emitted in the downstream direction. Because the numerical results are based
on the full retarded potential (1.3) without any approximations, this result validates
implicitly the applicability of the Fraunhofer approximation in the present context.

From figure 6(a) it becomes clear that all sufficiently slender subsonic wave packets
are superdirective. For σ < 1, however, we may obtain a directivity pattern which is
reminiscent of a dipole (figure 7). We call this a ‘bidirective’ emission. At this point,
it is important to emphasize the difference between the bidirective emission pattern
and an actual dipole. While a dipole does not emit any sound at all in the sideline
direction (ϕ = 90◦), the bidirective source emits an exponentially small amount of
acoustic energy also in this direction.

To determine whether the emission pattern has superdirective or bidirective
character, we have to look at the local radius of curvature of the ellipse centred
at (k0, 0) which intersects tangentially with the acoustic circle at (−ka, 0) (figure 7a).
It is straightforward to show that the radius of curvature of the ellipse at this point is
σ 2(|k0|+ ka). If this radius is smaller than the radius of the acoustic circle, ka , we have
a bidirective emission pattern. Otherwise, the emission to the far field is superdirective.
From this, we obtain the following condition for bidirective sound emission:

σ <

√
Mp

Mp + 1
or Mp >

σ 2

1 − σ 2
. (3.4)

This relation is illustrated and verified in figure 8. It shows the results of a numerical
integration of (1.3) for a wave packet source with σ = 0.5. As we increase stepwise
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Figure 8. Transition from superdirective to bidirective emission for broad subsonic wave
packets: The solid line in (a) illustrates the bidirectivity condition (3.4). The crosses in
(a) indicate the parameter values for the numerical experiment shown in (b) (σ = 0.5 and
Mp = 0.25, 0.30, . . . , 1). The solid lines in (b) correspond to values of Mp for which (3.4) is
satisfied, whereas the broken lines indicate that the bidirectivity condition is not satisfied.

the Mach number of this source from 0.25 to 1, we observe the transition form
superdirective to bidirective emission as predicted by (3.4). For small Mach numbers,
the SPL curves have a single local maximum at ϕ = 0◦ (superdirectivity). As soon as
condition (3.4) is satisfied the curves feature a second local maximum at ϕ = ±180◦

(bidirectivity).
The intensity of the sound emission in the down- and upstream directions is again

determined by the loudness conditions (2.4) and (2.5), respectively. Here, we would
like to stress again the difference between the emission pattern (super- or bidirective)
and the loudness (uni- or bidirectional). The loudness criteria give us only information
about the intensity of the emission in the up- and downstream directions, whereas the
bidirectivity condition (3.4) indicates only whether the SPL has one (superdirective)
local maximum or two (bidirective) local maxima. The most relevant parameter for
the sound intensity is the acoustic compactness L1/λa , while it is the aspect ratio σ

which determines the topology of the directivity pattern.

3.2. Supersonic phase velocity

If the phase speed of the waves within the wave packet envelope is supersonic we may
obtain Mach waves. In the traditional theory of Mach waves the angle at which the
Mach waves are emitted is given by ϑc = arccos(1/Mp) (Phillips 1960). This formula is
the result of a simple geometric construction in the wavenumber plane for sinusoidal
travelling waves. Wu (2005) derived formulas for the dominant emission direction and
intensity for supersonic wave packets which are slowly modulated in the streamwise
direction. Here, we discuss supersonic wave packets with Gaussian envelopes (figure 9).
For very slender wave packets, σ � 1, the wave packet in the spectral domain cuts
through the acoustic circle |k| = ka at ϑ ≈ arccos(1/Mp), and we obtain classical Mach
waves. For wave packets with σ ≈ 1, however, the inscribed ellipse with aspect ratio
1/σ will intersect tangentially the acoustic circle at (ka, 0) such that the dominant
emission angle is ϑ = 0◦ and the emission has superdirective character. The transition
from this superdirective emission to Mach waves occurs when the curvature of the
source field at the point (ka, 0) in the wave number plane becomes larger than the
curvature of the acoustic circle. Therefore, Mach waves exist only if

σ >

√
Mp

Mp − 1
or Mp >

σ 2

σ 2 − 1
. (3.5)
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Figure 9. Emission of Mach waves a supersonic wave packet with Mp = 2 and σ = 3.
(a) Diagram showing the construction of the dominant emission direction ϑ (different from the
classical Mach angle cos ϑc = 1/Mp). (b) Numerical experiment. (See the caption of figure 6b
for a more detailed explanation of b.)
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Figure 10. (a) Condition (3.5) for Mach waves; the broken lines indicate the corrected Mach
angle (3.6). (b) Dominant emission direction as function of the Mach number Mp for wave
packets with aspect ratio σ = 1.5: ×, numerical experiment; ——, corrected Mach angle ϑ
(3.6); – – –, classical Mach angle ϑc = arccos 1/Mp .

This relation is visualized in figure 10(a) which shows that Mach waves are only
possible for sufficiently slender and sufficiently fast wave packets. Furthermore, a
numerical experiment (figure 10b shows that the classical relation ϑc = arccos(1/Mp)
over-predicts the dominant emission angle. The classical relation for the Mach angle
is only valid for infinitely slender wave packets. For wave packets with finite aspect
ratio we can derive the corrected Mach angle as

cos ϑ =
1

Mp

σ 2

σ 2 − 1
. (3.6)

Note that this expression is consistent with (3.5), as it assumes the limiting value of
(3.5) if we set ϑ = 0◦. Furthermore, we can recover the formula for the classical Mach
angle by letting σ go to infinity.

Apart from the Mach waves (figure 9b) and the superdirective emission (figure 11b)
we may also obtain a bidirective emission pattern (figure 11c). This is the case if
the wave packet is so broad (σ < 1) that the ellipse which intersects tangentially at
(−ka, 0) has a radius of curvature smaller than ka (figure 11a). It turns out that
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the condition for supersonic bidirectivity is equivalent to condition (3.4) for subsonic
sources.

3.3. Unified theory

In the previous sections, we have derived several criteria for characterizing the
directivity of sound emission for two-dimensional wave packet sources with α = 0◦.
We observe that expressions (3.4)–(3.6) are formally very similar. As a matter of fact,
we will show in the following that the results of the previous two sections can be
unified in a single theory.

To this end, we find first a general solution for the sound emission from two-
dimensional wave packet sources. According to the spectral form of the Fraunhofer
approximation of Lighthill’s analogy (1.9), the Fourier transform of our wave packet
source,

q̂(k1, k2) = q0e
−(k1−k0,1)

2L2
1/4−(k2−k0,2)

2L2
2/4, (3.7)

can be used to determine the sound emitted to the far field. We can obtain an explicit
expression for the sound emission by parameterizing (3.7) along the acoustic circle;
i.e. we set (k1, k2) = (ka cos ϕ, ka sinϕ), where ϕ is the emission angle measured from
the x1-axis. After some rearrangement of terms, we obtain the general solution for
the sound emission from two-dimensional wave packet sources,

p̃(ϕ) ∼ exp

{
− π2L2

1

M2
pλ

2
a

[
(cosα − Mp cos ϕ)2 +

1

σ 2
(sin α − Mp sinϕ)2

]}
. (3.8)

For the special case in which the wave propagates in the x1-direction (α =0◦)
and in which the wave packet is compact in the x2-direction (σ → ∞) we recover
immediately the antenna factor by Huerre & Crighton (1983). Note that the
Fraunhofer approximation does not reproduce any multipole terms (cos2 ϕ, cos4 ϕ,
etc.). These contributions were discarded in § 1.1 with the so-called amplitude error.

Based on the general solution (3.8) and the definition of the SPL (3.3) we can now
find an expression for the difference �SPL in the SPL between down- and upstream
emissions, i.e. ϕ = 0◦ and 180◦,

�SPL =
8π2

Mp

(
L

λa

)2

. (3.9)

Similar to the loudness criteria (2.4) and (2.5), the difference in �SPL is mainly
governed by the acoustic compactness of the source.

Next, we derive an analytical expression for the relative curvature κ of SPL(ϕ) at
ϕ =0◦. If we define κ as

κ ≡ − 2

�SPL

∂2

∂ϕ2
SPL|ϕ=0◦ (3.10)

we find from (3.8) that

κ = 1 − Mp +
Mp

σ 2
. (3.11)

Geometrically, the relative curvature κ indicates whether the SPL curves (e.g. the
curves in figure 8b or the thick lines in figures 6b, 7b, 9b, 11b, 11c, etc.) have a local
minimum (κ < 0) or maximum (κ > 0) at ϕ =0◦ (given that the sound emission is
symmetric with respect to the x1-axis). If we rewrite (3.11) as

Mp = (1 − κ)
σ 2

1 − σ 2
(3.12)
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Figure 11. (a) Emission from supersonic wave packets without Mach waves: (b) super-
directivity (Mp = 2, σ =1), (c) bi-directivity (Mp = 2, σ = 0.1). (See caption of figure 6b for a
more detailed explanation of b and c.)

we see immediately a connection to the conditions for bidirective wave packets (3.4)
and for Mach waves (3.5). We can recover these relations by setting κ =2 and
κ = 0, respectively. Therefore, curvatures larger than 2 indicate bidirective emission.
Positive curvatures smaller than 2 (i.e. 0 <κ < 2) indicate superdirectivity, and negative
curvatures indicate Mach waves. From (3.12) it becomes also clear that Mach
waves, i.e. κ < 0 are inherently tied to supersonic wave packets (Mp > 1). Further,
a comparison of (3.12) with the expression for the corrected Mach angle (3.6) shows
that there exists a direct relation between the corrected Mach angle ϑ and the
(negative) curvature κ ,

cos ϑ =
1

1 − κ
for κ < 0. (3.13)

We summarize these results in figure 12. It shows contours of constant κ as a
function of the aspect ratio σ and the Mach number Mp . The contour lines for
κ = 0 and κ = 2 divide the (σ, Mp)-plane into three different domains: bidirective
emission (cf. figures 7b and 11c), superdirective emission (cf. figures 6b and 11b) and
Mach waves (cf. figure 9b). And as we have learned from (3.13), the contour lines
in the Mach wave domain are also lines of constant dominant emission angle ϑ (cf.
figure 10a).

4. Oblique wave packets
In the previous section, we have derived a theory for the directivity of the acoustic

emission from two-dimensional wave packets with waves propagating along one of
the principal axes of the wave packet (α = 0◦). In this section, we relax this constraint
and study wave packets with oblique wave propagation (α �= 0◦). We will find that
such sources exhibit more complex emission patterns.

As an example, figure 13 shows a numerical experiment with three oblique wave
packet sources with subsonic phase velocity. All three wave packets have the same
Mach number Mp and the same wave propagation direction α. They only differ in
their aspect ratio σ . We observe that all emission patterns have a superdirective
character and that the angle ϑ of the dominant emission direction is apparently a
function of the aspect ratio σ . For large σ , subsonic oblique wave packets emit mostly
into the downstream direction. As the aspect ratio σ decreases, the acoustic emission
shifts to higher emission angles ϑ . For σ =1 the dominant emission angle ϑ coincides
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Figure 12. Composite diagram showing the domains of bidirective emission, superdirectivity
and Mach waves as a function of the phase Mach number Mp and the aspect ratio σ . The
dashed lines with numbers indicate the values of the curvature κ . For negative curvatures the
broken lines are identical with curves of constant Mach angle (cf. figure 10a).
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Figure 13. Oblique wave packets with Mp = 0.4, α = 60◦ and (a) σ = 1, (b) σ = 3, (c) σ = 10.
(See the caption of figure 6b for a more detailed explanation of these figures.)

exactly with the wave propagation angle α which is, of course, an obvious result if
we consider the high level of symmetry of this configuration.

We can explain the observations for subsonic oblique wave packets by similar
reasoning as in the previous section. In figure 14(a) we show that the dominant
emission angle ϑ can be found by constructing an ellipse centred at (k0,1, k0,2)
with aspect ratio 1/σ which intersects the acoustic circle tangentially. The point
of tangential intersection indicates the dominant emission angle ϑ . It can be shown
that this angle satisfies the relation

σ =

√
cosϑ(sinα − Mp sin ϑ)

sinϑ(cosα − Mp cosϑ)
. (4.1)
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Figure 14. (a) Directivity of sound emission from oblique subsonic wave packets with different
aspect ratios (Mp = 0.4, α = 60◦). (b) Dominant angle of emission ϑ as a function of σ for
oblique wave packets with α = 60◦ and Mp = 0.1, . . . , 0.9. The broken lines indicate that one
of the projected Mach numbers, Mp/ cos α or Mp/ sin α, is supersonic. (The labels ①, ② and
③ correspond to figure 13a–c, respectively. The label ④ refers to the wave packet shown in
figure 15.)
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Figure 15. Mach-wave-like emission from an oblique wave packet with Mp = 0.9, α = 60◦

and σ = 10. (See the caption of figure 6b for a more detailed explanation of b.)

Note that we can formally recover the expression for the corrected Mach angle (3.6)
if we set α =0◦.

In the case in which the projection of the Mach number on the x1- or x2-axis
(Mp/ cosα or Mp/ sinα, respectively) is supersonic, we may obtain a situation as
shown in figure 15 which produces Mach-wave-like emission with two lobes. Unlike
the real Mach waves from § 3.2, this emission pattern is asymmetric such that the
main lobe which is approximately aligned with the phase velocity of the source has a
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higher intensity (and a slightly higher emission angle) than the secondary lobe. Even
in that case, relation (4.1) predicts the dominant emission angle (of the main lobe)
correctly. However, either the nominator or the denominator of (4.1) will become zero
for a finite angle ϑ such that the range of possible emission angles ϑ does not span
the full range from 0◦ to 90◦.

Figure 14b illustrates relation (4.1) for oblique wave packets with α =60◦. We
see that the dominant emission angles of sources with supersonic projected phase
velocities (shown as broken lines) attain the limiting angles arcsin(sinα/Mp) and
arccos(cos α/Mp) for σ → 0 and σ → ∞, respectively.

Supersonic oblique wave packets do not exhibit any surprising new emission
patterns. We can find asymmetric Mach waves (similar to the results shown in
figure 15) and oblique superdirective emission (similar to figure 13). Only the
bidirective emission pattern (cf. figure 11c) that we have observed for α = 0◦ becomes
now an asymmetric Mach wave emission which is oriented along the x2-axis. In that
sense, the supersonic bidirectivity from § 3.2 can also be regarded as an oblique Mach
wave with respect to the x2-axis which has a dominant emission angle of ϑ = 90◦.

5. Origin of wave packet sources
So far, we have only talked about generic sources q(x, t) with a Gaussian envelope,

and one could argue that a source as defined in (3.1) does not exist in reality.
Therefore, we would like to discuss, in this section, how our generic source fields
q(x, t) relate to physical quantities.

If we assume that we have a pressure field p(x, t) in the form of a wave packet with
Gaussian envelope the tensor Tij in Lighthill’s analogy will only have diagonal entries.
The Lighthill source term then reduces to q(x, t) = ∂2p/∂xi∂xi , i.e. the Laplacian of
p. At first glance, this does not really seem to help us, since the Laplacian of a
wave packet with Gaussian envelope is not a Gaussian wave packet anymore. In
the spectral formulation of the Fraunhofer approximation (1.11), however, we find
that the diagonal entries T̂ii are multiplied by kiki , and because the Fourier modes
of interest lie all on the acoustic circle |k| = ka , this factor (which in two dimensions
is k2

1 + k2
2) is exactly equal to |k|2 = k2

a . This means that a pressure field in the shape
of a Gaussian wave packet emits sound exactly the same way as a generic Gaussian
wave packet source q (apart from the factor k2

a and the differences due to the
Fraunhofer approximation). This is the case even though the Lighthill source term
∂2Tij /∂xi∂xj is not a Gaussian wave packet anymore. We have confirmed this fact
numerically by computing the acoustic far field once for a pressure field p according to
Lighthill’s analogy (1.3) and once for a generic source q with corresponding Gaussian
envelope. We find that the results are equivalent up to errors due to the Fraunhofer
approximation.

The same reasoning works, of course, also for pure density fluctuations. In the
context of Lighthill’s analogy, however, the source field must be anisentropic if
pressure and/or density fluctuations shall emit sound. Furthermore, the arguments
made for pressure sources do not apply, in general, for the other terms of the Lighthill
stress tensor (1.2), which involve velocities, e.g. ρuiuj . Therefore, the example of the
pure pressure source is not sufficient to establish the relevance of the present theory
in the context of Lighthill’s acoustic analogy.

A much better indication for its relevance is the observation that many source fields
(near-field fluctuations) have actually the character of wave packets (e.g. Freund 2001).
Stationary sources with Gaussian envelopes may arise, in particular, in the case of
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Mach wave radiation from instability modes in supersonic jets (Mitchell, Lele &
Moin 1997; Wu 2005). Moreover, the key ideas of the present theory can also be
applied to non-Gaussian wave packets. As long as the contour lines of the sources in
the wavenumber space are not too dissimilar from ellipses, the results presented here
should hold approximately. At the same time, we should also stress that the present
theory is limited to stationary envelopes. Wave packets sources which are convected
and/or change their shape (e.g. Wu & Huerre in press) are not covered by the present
theory.

6. Applications
In this section, we would like to present two applications of the presented theory.

These examples will show that the results derived in the previous sections are relevant
to jet aeroacoustics. In particular, we will study two cases of sound emission from
subsonic jets. The first example investigates the superdirective sound emission from
low-Mach-number jets. The second example discusses the oblique emission of low-
frequency sound from highly subsonic jets with low Reynolds numbers.

6.1. Superdirectivity in the experiment of Laufer & Yen (1983)

The analogy between pressure fields with Gaussian envelope and generic wave packet
sources of the form (3.1) allows us to compare our results to the work of Crighton &
Huerre (1990) who studied superdirective emission patterns due to pressure boundary
conditions. In contrast to our work, the boundary conditions are equivalent to pressure
sources which are compact in the sideline direction (σ → ∞).

Crighton & Huerre (1990) tried to explain a specific emission pattern observed
experimentally by Laufer & Yen (1983). Laufer & Yen (1983) studied a low-Mach-
number jet and found wave-packet-like structures in the jet which emit sound in a
superdirective manner,

〈p2〉 ∼ exp(90Mpcosϕ), (6.1)

where 〈p2〉 is a measure for the sound intensity in the far field, i.e. SPL= log〈p2〉 +
constant. These wave packets had a phase Mach number of Mp = 0.05 and were only
about two wavelengths long, i.e. L ≈ 2λ0. With respect to the acoustic wavelength
λa = 2πa0/ω this wave packet was very short (approximately 0.1λa) and therefore
‘acoustically compact’. Crighton & Huerre (1990) asked the question ‘How can such
a small wave packet be superdirective?’

Based on the results established in § 3.3, it is now relatively easy to answer this
question. From (3.9) we see that the length scale L is relevant for the difference �SPL
between the down- and upstream SPLs. However, it is only the aspect ratio σ and
the Mach number Mp which determine whether the acoustic field has a superdirective
topology (namely a single local maximum in the downstream direction).

From (6.1) we compute that the difference in the SPL between down- and upstream
emissions is �SPL = 90Mp − (−90Mp) = 9. And according to (3.10) the relative
curvature at ϕ = 0◦ is κ =1 (which indicates the superdirective character). The two
values �SPL and κ fully characterize the emission pattern, and we can use the
formulas from § 3.3 to determine the shape of the source field. From (3.9) and (3.11)
we find that �SPL = 9 is attained for

L

λa

=

√
Mp�SPL

8π2
≈ 0.076 (6.2)
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line indicates the result of Laufer & Yen (1983). (The SPL curves are all shifted to a maximum
value of 0.)
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Figure 17. (a) Difference between down- and upstream �SPL and (b) curvature κ for wave
packets with Mp = 0.05, σ = 0.1, . . . , 10 and L/λa = 0.3, . . . , 0.8: ——, analytical predictions;
×, numerical results. Note that the solid lines (analytical predictions) collapse exactly in
(a) for different σ and in (b) for different L/λa . The dashed lines indicate the values found by
Laufer & Yen (1983).

and that κ = 1 corresponds to an aspect ratio of σ = 1 (cf. figure 12). Given the
difficulty of determining the width of a wave packet from experimental measurements
(as already pointed out by Cooper & Crighton 2000), we believe that our prediction
for the width, 0.076λa , is reasonably close to the width of 0.1λa reported by Laufer &
Yen (1983). Further, result (6.2) illustrates again that acoustic compactness goes
along well with superdirectivity. As a matter of fact, for the given Mach number
superdirectivity would be obtained for all wave packets with aspect ratios σ larger
than 1/

√
21 ≈ 0.22.

We summarize that the emission pattern observed by Laufer & Yen (1983) is
consistent with a wave packet source with Mp = 0.05, σ ≈ 1 and L ≈ 0.076λa . To verify
these results, we computed the acoustic emission from different acoustic sources by
numerical integration of (1.3). Figures 16 and 17 compare these numerical results with
our theoretical predictions and the findings of Laufer & Yen (1983). In figure 17(b)
we see that the relative curvature κ changes only very little as σ → ∞. Therefore, the
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Figure 18. Construction of a pair of oblique wave packets with the wave packets in phase (top
right) and out of phase (bottom right). The arrows indicate the direction of wave propagation.

results of Laufer & Yen (1983) could also have been observed for aspect ratios much
larger than unity.

With respect to the work of Crighton & Huerre (1990), we would like to point
out that their result for Gaussian wave packets is consistent with our findings.
Namely the factor Mp/ε2 in the exponent of their equation (3.7) indicates that
�SPL = 2Mp/ε2. According to our nomenclature their parameter ε corresponds to
the ratio λ0/(2πL), and therefore, they predicted exactly the same �SPL as we did in
(3.9). It should be mentioned, however, that the main question raised by Crighton &
Huerre (1990) remains unanswered: the present theory does not give any indication
why the experiments by Laufer & Yen (1983) do not display any quadrupole character
as suggested by Lighthill’s analogy.

6.2. Pairs of oblique wave packets

An interesting consequence of our findings for oblique wave packets (cf. § 4) is
the directivity of the acoustic emission from pairs of oblique wave packets with
k0 = (k0,1, ±k0,2). The symmetry with respect to the x1-axis leads to a standing wave
in the x2-direction. The waves propagate only in the x1-direction with an apparent
Mach number of Mp/ cos α (figure 18). Such a configuration is reminiscent of flow
fields that we can find during the vortex pairing process in subsonic jets (see, for
instance, figures 9, 12 and 13 in Sandham et al. 2006). Figure 19 shows two numerical
experiments with pairs of subsonic oblique waves. Although the nominal phase Mach
number is Mp = 0.4 with a propagation angle α = ±60◦, the waves in the source field
appear to move only in the x1-direction with phase speed Mp/ cosα = 0.8. If the pair
is in phase (figure 19a) we obtain an emission pattern reminiscent of Mach waves
with a local minimum at ϕ = 0◦ and a dominant emission of about 30◦. If the pair
oscillates out of phase (figure 19b), the emission intensity in the downstream direction
goes to zero because the sound waves emitted by the two wave packets cancel exactly
along the x1-axis. In that case, the Mach-wave-like emission pattern is even more
pronounced.

These results show that a Mach-wave-like emission pattern can also be obtained
for source fields with truly subsonic wave speed in the downstream direction. Unlike
in the case shown in figure 15, neither the nominal Mach number nor its projections
on to the x1- or x2-axis are supersonic. As hinted above, source fields of this type can
be found in laminar subsonic jet flows during the vortex pairing process. Depending
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Figure 19. Pair of obliquewave packetswithMp = 0.4,α = ±60◦, σ = 3: (a) in phase, (b) out
of phase. (See the caption of figure 6b for a more detailed explanation of these figures.)

on whether the vortices on opposite sides of the jet are staggered or not, the sound
emission in the downstream direction ϕ =0◦ will be more or less silent. Anyway, the
dominant direction of sound emission is oblique as also found in several numerical
and physical experiments; see, for instance, figure 14 in Tam & Morris (1980) or
figure 10 in Freund (2001). The present theory offers a simple geometric explanation
for this oblique directivity pattern.

7. Summary and concluding remarks
The present work describes a theory for the acoustic emission from wave packet

sources to the far field. The foundation of this theory is an approximation to
Lighthill’s acoustic analogy for distant observers which is known as the Fraunhofer
approximation. Because we transform this approximation to the frequency–
wavenumber domain the theory has a very illustrative character and uses simple
geometric constructions.

The main concepts of the theory were introduced in § 2 for one-dimensional
problems. The criteria for uni- and bidirectional loudness, (2.4) and (2.5), are the
main results of this section. With the extension to two spatial dimensions in § 3 we
introduced the aspect ratio σ which turns out to be a key parameter for the acoustic
emission pattern. In § 3.3 we presented a unified theory for two-dimensional wave
packets for which the wave propagation is aligned with one of the principal axes of
the source field. Figure 12 – together with (3.9), (3.11) and (3.13) – is arguably the
principal result of this paper. It illustrates the domains for bidirective, superdirective
and Mach wave emissions as a function of the Mach number Mp and the aspect ratio
σ and shows the corrected Mach angle. It should be emphasized at this point that
we were able to find formulas which are surprisingly simple functions of the aspect
ratio because σ is a uniform parameter in our model; i.e. all (physical and spectral)
amplitude contours of the source field are ellipses of the same aspect ratio. The
two-dimensional theory has been generalized to oblique waves in § 4. Equation (4.1)
is the main result of this section. It describes the dominant angle of sound emission
(with superdirective or Mach wave character) from wave packets with oblique waves.
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To relate our theory to actual acoustic source field, we showed in § 5 that all results
apply directly to pure pressure or density fluctuations in the shape of Gaussian wave
packets. And we argued that wave packet sources have been observed in several
acoustic source fields. As a first application of the presented theory, we used our
results in § 6.1 to explain experimental observations by Laufer & Yen (1983). The
study of this problem showed also that the results of Crighton & Huerre (1990)
for Gaussian envelopes are a special case of our theory for σ → ∞. In a second
application, we discussed the emission of pairs of oblique waves in § 6.2 and suggested
that some features of the acoustic emission pattern of subsonic jets can be explained
by such pairs of oblique wave packets.

The proposed theory can serve as a tool for relating wave packet sources to an
acoustic emission pattern. It stresses the fact that the the topology of the directivity
pattern of a source field depends strongly on the phase Mach number and its aspect
ratio.
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